Ultrafine Friction Grinding of Lignin for Development of Starch Biocomposite Films

Author:

Mousavi Seyedeh Najmeh,Nazarnezhad Noureddin,Asadpour GhasemORCID,Ramamoorthy Sunil KumarORCID,Zamani AkramORCID

Abstract

The work demonstrates the utilization of fractionalized lignin from the black liquor of soda pulping for the development of starch-lignin biocomposites. The effect of ultrafine friction grinding on lignin particle size and properties of the biocomposites was investigated. Microscopic analysis and membrane filtration confirmed the reduction of lignin particle sizes down to micro and nanoparticles during the grinding process. Field Emission Scanning Electron Microscopy confirmed the compatibility between lignin particles and starch in the composites. The composite films were characterized for chemical structure, ultraviolet blocking, mechanical, and thermal properties. Additional grinding steps led to the reduction of large lignin particles and the produced particles were uniform. The formation of 7.7 to 11.3% lignin nanoparticles was confirmed in the two steps of membrane filtration. The highest tensile strain of the biocomposite films were 5.09 MPa, which displays a 40% improvement compared to starch films. Further, thermal stability of the composite films was better than that of starch films. The results from ultraviolet transmission showed that the composite films could act as an ultraviolet barrier in packaging applications.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3