Crosslinking Behavior of UV-Cured Polyorganosilazane as Polymer-Derived Ceramic Precursor in Ambient and Nitrogen Atmosphere

Author:

Qazzazie-Hauser AfnanORCID,Honnef Kirsten,Hanemann ThomasORCID

Abstract

Polymer-derived ceramics (PDCs) based on silicon precursor represent an outstanding material for ceramic coatings thanks to their extraordinary versatile processibility. A promising example of a silicone precursor, polyorganosilazane (Durazane 1800), was studied concerning its crosslinking behavior by mixing it with three different photoinitiators, and curing it by two different UV-LED sources under both nitrogen and ambient atmosphere. The chemical conversion during polymerization and pyrolysis was monitored by FTIR spectroscopy. Pyrolysis was performed in a nitrogen atmosphere at 950 °C. The results demonstrate that polyorganosilazane can be cured by the energy-efficient UV-LED source at room temperature in nitrogen and ambient atmosphere. In nitrogen atmosphere, already common reactions for polysilazanes, including polyaddition of the vinyl group, dehydrogenation reactions, hydrosilylation, and transamination reaction, are responsible for crosslinking. Meanwhile, in ambient atmosphere, hydrolysis and polycondensation reactions occur next to the aforementioned reactions. In addition, the type of photoinitiator has an influence on the conversion of the reactive bonds and the chemical composition of the resulting ceramic. Furthermore, thermogravimetric analysis (TGA) was conducted in order to measure the ceramic yield of the cured samples as well as to study their decomposition. The ceramic yield was observed in the range of 72 to 78% depending on the composition and the curing atmosphere. The curing atmosphere significantly impacts the chemical composition of the resulting ceramics. Depending on the chosen atmosphere, either silicon carbonitride (SiCN) or a partially oxidized SiCN(O) can be produced.

Funder

Forschungszentrum Jülich

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3