Rubbery-Modified CFRPs with Improved Mode I Fracture Toughness: Effect of Nanofibrous Mat Grammage and Positioning on Tanδ Behaviour

Author:

Maccaferri EmanueleORCID,Mazzocchetti LauraORCID,Benelli TizianaORCID,Brugo Tommaso Maria,Zucchelli AndreaORCID,Giorgini LorisORCID

Abstract

Carbon Fiber Reinforced Polymers (CFRPs) are widely used where high mechanical performance and lightweight are required. However, they suffer from delamination and low damping, severely affecting laminate reliability during the service life of components. CFRP laminates modified by rubbery nanofibers interleaving is a recently introduced way to increase material damping and to improve delamination resistance. In this work, nitrile butadiene rubber/poly(ε-caprolactone) (NBR/PCL) blend rubbery nanofibrous mats with 60 wt% NBR were produced in three different mat grammages (5, 10 and 20 g/m2) via single-needle electrospinning and integrated into epoxy CFRP laminates. The investigation demonstrated that both mat grammage and positioning affect CFRP tanδ behaviour, evaluated by dynamic mechanical analysis (DMA) tests, as well as the number of nano-modified interleaves. Double cantilever beam (DCB) tests were carried out to assess the mat grammage effect on the interlaminar fracture toughness. Results show an outstanding improvement of GI,R for all the tested reinforced laminates regardless of the mat grammage (from +140% to +238%), while the effect on GI,C is more dependent on it (up to +140%). The obtained results disclose the great capability of NBR/PCL rubbery nanofibrous mats at improving CFRP damping and interlaminar fracture toughness. Moreover, CFRP damping can be tailored by choosing the number and positioning of the nano-modified interleaves, besides choosing the mat grammage.

Funder

Regione Emilia-Romagna

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Reference47 articles.

1. Rubber-Toughened Epoxies: A Critical Review

2. A Review on Rubber-Enhanced Polymeric Materials

3. Toughened Epoxy Resins: Preformed Particles as Tougheners for Adhesives and Matrices;Riew,1996

4. Reaction-Induced Phase Separation in Modified Thermosetting Polymers;Williams,1997

5. CTBN rubber phase precipitation in model epoxy resins

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3