Contemporary Techniques for Remediating Endocrine-Disrupting Compounds in Various Water Sources: Advances in Treatment Methods and Their Limitations

Author:

Katibi Kamil KayodeORCID,Yunos Khairul Faezah,Che Man HasfalinaORCID,Aris Ahmad Zaharin,Mohd Nor Mohd ZuhairORCID,Azis Rabaah SyahidahORCID,Umar Abba Mohammed

Abstract

Over the years, the persistent occurrence of superfluous endocrine-disrupting compounds (EDCs) (sub µg L−1) in water has led to serious health disorders in human and aquatic lives, as well as undermined the water quality. At present, there are no generally accepted regulatory discharge limits for the EDCs to avert their possible negative impacts. Moreover, the conventional treatment processes have reportedly failed to remove the persistent EDC pollutants, and this has led researchers to develop alternative treatment methods. Comprehensive information on the recent advances in the existing novel treatment processes and their peculiar limitations is still lacking. In this regard, the various treatment methods for the removal of EDCs are critically studied and reported in this paper. Initially, the occurrences of the EDCs and their attributed effects on humans, aquatic life, and wildlife are systematically reviewed, as well as the applied treatments. The most noticeable advances in the treatment methods include adsorption, catalytic degradation, ozonation, membrane separation, and advanced oxidation processes (AOP), as well as hybrid processes. The recent advances in the treatment technologies available for the elimination of EDCs from various water resources alongside with their associated drawbacks are discussed critically. Besides, the application of hybrid adsorption–membrane treatment using several novel nano-precursors is carefully reviewed. The operating factors influencing the EDCs’ remediations via adsorption is also briefly examined. Interestingly, research findings have indicated that some of the contemporary techniques could achieve more than 99% EDCs removal.

Funder

Universiti Putra Malaysia ‎

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3