Recent Advances in Chemically-Modified and Hybrid Carrageenan-Based Platforms for Drug Delivery, Wound Healing, and Tissue Engineering

Author:

Mokhtari Hamidreza,Tavakoli Shima,Safarpour Fereshteh,Kharaziha MahshidORCID,Bakhsheshi-Rad Hamid Reza,Ramakrishna SeeramORCID,Berto Filippo

Abstract

Recently, many studies have focused on carrageenan-based hydrogels for biomedical applications thanks to their intrinsic properties, including biodegradability, biocompatibility, resembling native glycosaminoglycans, antioxidants, antitumor, immunomodulatory, and anticoagulant properties. They can easily change to three-dimensional hydrogels using a simple ionic crosslinking process. However, there are some limitations, including the uncontrollable exchange of ions and the formation of a brittle hydrogel, which can be overcome via simple chemical modifications of polymer networks to form chemically crosslinked hydrogels with significant mechanical properties and a controlled degradation rate. Additionally, the incorporation of various types of nanoparticles and polymer networks into carrageenan hydrogels has resulted in the formation of hybrid platforms with significant mechanical, chemical and biological properties, making them suitable biomaterials for drug delivery (DD), tissue engineering (TE), and wound healing applications. Herein, we aim to overview the recent advances in various chemical modification approaches and hybrid carrageenan-based platforms for tissue engineering and drug delivery applications.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Biomaterials in Medical Applications;Current Materials Science;2024-09

2. A double-layer cellulose/pectin-soy protein isolate-pomegranate peel extract micro/nanofiber dressing for acceleration of wound healing;International Journal of Biological Macromolecules;2024-01

3. Multifunctional Naturally Derived Bioadhesives: from Strategic Molecular Design toward Advanced Biomedical Applications;Progress in Polymer Science;2024-01

4. Polymers in wound dressing;Polymeric Materials for Biomedical Implants;2024

5. Polymeric Nanocarriers for the Delivery of Phytoconstituents;Nanotechnology Based Delivery of Phytoconstituents and Cosmeceuticals;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3