Impact of Macrodiols on the Morphological Behavior of H12MDI/HDO-Based Polyurethane Elastomer

Author:

Naheed Shazia,Zuber Mohammad,Salman Mahwish,Rasool Nasir,Siddique Zumaira,Shaik Mohammed RafiORCID,Sharaf Mohammed A. F.,Abdelgawad AbdelattyORCID,Sekou Doumbia,Awwad Emad Mahrous

Abstract

In this study, we evaluated the morphological behavior of polyurethane elastomers (PUEs) by modifying the soft segment chain length. This was achieved by increasing the soft segment molecular weight (Mn = 400–4000 gmol−1). In this regard, polycaprolactone diol (PCL) was selected as the soft segment, and 4,4′-cyclohexamethylene diisocyanate (H12MDI) and 1,6-hexanediol (HDO) were chosen as the hard segments. The films were prepared by curing polymer on Teflon surfaces. Fourier transform infrared spectroscopy (FTIR) was utilized for functional group identification in the prepared elastomers. FTIR peaks indicated the disappearance of −NCO and −OH groups and the formation of urethane (NHCOO) groups. The morphological behavior of the synthesized polymer samples was also elucidated using scanning electron microscopy (SEM) and atomic force microscopy (AFM) techniques. The AFM and SEM results indicated that the extent of microphase separation was enhanced by an increase in the molecular weight of PCL. The phase separation and degree of crystallinity of the soft and hard segments were described using X-ray diffraction (XRD). It was observed that the degree of crystallinity of the synthesized polymers increased with an increase in the soft segment’s chain length. To evaluate hydrophilicity/hydrophobicity, the contact angle was measured. A gradual increase in the contact angle with distilled water and diiodomethane (38.6°–54.9°) test liquids was observed. Moreover, the decrease in surface energy (46.95–24.45 mN/m) was also found to be inconsistent by increasing the molecular weight of polyols.

Funder

Deanship of Scientific Research, King Saud University

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3