Heat-Affected Zone and Mechanical Analysis of GFRP Composites with Different Thicknesses in Drilling Processes

Author:

Khashaba Usama A.,Abd-Elwahed Mohamed S.,Najjar Ismai,Melaibari Ammar,Ahmed Khaled I.ORCID,Zitoune Redouane,Eltaher Mohamed A.

Abstract

This article presents a comprehensive thermomechanical analysis and failure assessment in the drilling of glass fiber-reinforced polymer (GFRP) composites with different thicknesses using a CNC machine and cemented carbide drill with a diameter of 6 mm and point angles of ϕ = 118°. The temperature distribution through drilling was measured using two techniques. The first technique was based on contactless measurements using an IR Fluke camera. The second was based on contact measurements using two thermocouples inserted inside the drill bit. A Kistler dynamometer was used to measure the cutting forces. The delamination factors at the hole exit and hole entry were quantified by using the image processing technique. Multi-variable regression analysis and surface plots were performed to illustrate the significant coefficients and contribution of the machining variables (i.e., feed, speed, and laminate thickness) on machinability parameters (i.e., the thrust force, torque, temperatures, and delamination). It is concluded that the cutting time, as a function of machining variables, has significant control over the induced temperature and, thus, the force, torque, and delamination factor in drilling GFRP composites. The maximum temperature recorded by the IR camera is lower than that of the instrumented drill because the IR camera cannot directly measure the tool–work interaction zone during the drilling process. At the same cutting condition, it is observed that by increasing the thickness of the specimen, the temperature increased. Increasing the thickness from 2.6 to 7.7 had a significant effect on the heat distribution of the HAZ. At a smaller thickness, increasing the cutting speed from 400 to 1600 rpm decreased the maximum thrust force by 15%. The push-out delaminations of the GFRP laminate were accompanied by edge chipping, spalling, and uncut fibers, which were higher than those of the peel-up delaminations.

Funder

National Science, Technology, and Innovation Plan (NSTIP) strategic technologies program in the Kingdom of Saudi Arabia

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3