Abstract
Natural rubber (NR) foams reinforced by a physical hybrid of nanographene/carbon nanotubes were fabricated using a two-roll mill and compression molding process. The effects of nanographene (GNS) and carbon nanotubes (CNT) were investigated on the curing behavior, foam morphology, and mechanical and thermal properties of the NR nanocomposite foams. Microscope investigations showed that the GNS/CNT hybrid fillers acted as nucleation agents and increased the cell density and decreased the cell size and wall thickness. Simultaneously, the cell size distribution became narrower, containing more uniform multiple closed-cell pores. The rheometric results showed that the GNS/CNT hybrids accelerated the curing process and decreased the scorch time from 6.81 to 5.08 min and the curing time from 14.3 to 11.12 min. Other results showed that the GNS/CNT hybrid improved the foam’s curing behavior. The degradation temperature of the nanocomposites at 5 wt.% and 50 wt.% weight loss increased from 407 °C to 414 °C and from 339 °C to 346 °C, respectively, and the residual ash increased from 5.7 wt.% to 12.23 wt.% with increasing hybrid nanofiller content. As the amount of the GNS/CNT hybrids increased in the rubber matrix, the modulus also increased, and the Tg increased slightly from −45.77 °C to −38.69 °C. The mechanical properties of the NR nanocomposite foams, including the hardness, resilience, and compression, were also improved by incorporating GNS/CNT hybrid fillers. Overall, the incorporation of the nano hybrid fillers elevated the desirable properties of the rubber foam.
Subject
Polymers and Plastics,General Chemistry
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献