Enhanced Low-Velocity Impact Properties for Resin Film Infusion-Manufactured Composites by Flow-Control Approach

Author:

Almazán-Lázaro Juan-AntonioORCID,López-Alba Elías,Schmeer SebastianORCID,Díaz-Garrido Francisco-Alberto

Abstract

The optimization of the mechanical properties of composite materials has been a challenge since these materials were first used, especially in aeronautics. Reduced energy consumption, safety and reliability are mandatory to achieve a sustainable use of composite materials. The mechanical properties of composites are closely related to the amount of defects in the materials. Voids are known as one of the most important defect sources in resin film infusion (RFI)-manufactured composites. Minimizing the defect content leads to maximized mechanical properties and lightweight design. In this paper, a novel methodology based on computer vision is applied to control the impregnation velocity, reduce the void content and enhance the impact properties. Optimized drop-impact properties were found once the impregnation velocity was analyzed and optimized. Its application in both conventional and stitching-reinforced composites concludes with an improvement in the damage threshold load, peak force and damaged area. Although stitching tends to generate additional voids and reduces in-plane properties, the reduction in the damaged area means a positive balance in the mechanical properties. At the same time, the novel methodology provides the RFI process with a noticeable level of automation and control. Consequently, the industrial interest and the range of applications of this process are enhanced.

Funder

Airbus

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3