Bioactivated Oxidized Polyvinyl Alcohol towards Next-Generation Nerve Conduits Development

Author:

Stocco Elena,Barbon SilviaORCID,Lamanna Alessia,De Rose EnricoORCID,Zamuner AnnjORCID,Sandrin Deborah,Marsotto MartinaORCID,Auditore Alessandro,Messina Grazia M. L.ORCID,Licciardello Antonino,Iucci GiovannaORCID,Macchi VeronicaORCID,De Caro RaffaeleORCID,Dettin MonicaORCID,Porzionato Andrea

Abstract

The limitations and difficulties that nerve autografts create in normal nerve function recovery after injury is driving research towards using smart materials for next generation nerve conduits (NCs) setup. Here, the new polymer partially oxidized polyvinyl alcohol (OxPVA) was assayed to verify its future potential as a bioactivated platform for advanced/effective NCs. OxPVA-patterned scaffolds (obtained by a 3D-printed mold) with/without biochemical cues (peptide IKVAV covalently bound (OxPVA-IKVAV) or self-assembling peptide EAK (sequence: AEAEAKAKAEAEAKAK), mechanically incorporated (OxPVA+EAK) versus non-bioactivated scaffold (peptide-free OxPVA (PF-OxPVA) supports, OxPVA without IKVAV and OxPVA without EAK control scaffolds) were compared for their biological effect on neuronal SH-SY5Y cells. After cell seeding, adhesion/proliferation, mediated by (a) precise control over scaffolds surface ultrastructure; (b) functionalization efficacy guaranteed by bioactive cues (IKVAV/EAK), was investigated by MTT assay at 3, 7, 14 and 21 days. As shown by the results, the patterned groove alone stimulates colonization by cells; however, differences were observed when comparing the scaffold types over time. In the long period (21 days), patterned OxPVA+EAK scaffolds distinguished in bioactivity, assuring a significantly higher total cell amount than the other groups. Experimental evidence suggests patterned OxPVA-EAK potential for NCs device fabrication.

Funder

‘Consorzio per la Ricerca Sanitaria’ (CORIS) of the Veneto Region, Italy

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3