Abstract
Fire protection has been a major challenge in wood construction for many years, mainly due to the high flame spread risk associated with wood flooring. Wood fire-retardancy is framed by two main axes: coating and bulk impregnation. There is a growing need for economically and environmentally friendly alternatives. The study of polyelectrolyte complexes (PECs) for wood substrates is in its infancy, but PECs’ versatility and eco-friendly character are already recognized for fabric fire-retardancy fabrics. In this study, a new approach to PEC characterization is proposed. First, PECs, which consist of polyethyleneimine and sodium phytate, were chemically and thermally characterized to select the most promising systems. Then, yellow birch (Betula alleghaniensis Britt.) was surface-impregnated under reduced pressure with the two PECs identified as the best options. Overall, wood fire-retardancy was improved with a low weight gain of 2 wt.% without increasing water uptake.
Funder
Canadian Network for Research and Innovation in Machining Technology, Natural Sciences and Engineering Research Council of Canada
Subject
Polymers and Plastics,General Chemistry
Reference84 articles.
1. Biophilia: The Human Bond with Other Species;Wilson,1984
2. Biophilic Design
3. Architectural Lessons from Environmental Psychology: The Case of Biophilic Architecture
4. Fire safety of wood construction;White,2010
5. Fire Safety Design in Buildings: A Reference for Applying the National Building Code of Canada Fire Safety Requirements in Building Design,1996
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献