Deformation Behavior and Fracture Patterns of Laminated PEEK- and PI-Based Composites with Various Carbon-Fiber Reinforcement

Author:

Kosmachev Pavel VORCID,Alexenko Vladislav O,Bochkareva Svetlana A,Panin Sergey VORCID

Abstract

Laminated composites based on polyetheretherketone (PEEK) and polyimide (PI) matrices were fabricated by hot compression. Reinforcing materials (unidirectional carbon-fiber (CF) tapes or carbon fabric) and their layout patterns were varied. Stress–strain diagrams after three-point flexural tests were analyzed, and both lateral faces of the fractured specimens and fractured surfaces (obtained by optical and scanning electron microscopy, respectively) were studied. It was shown that the laminated composites possessed the maximum mechanical properties (flexural elastic modulus and strength) in the case of the unidirectional CF (0°/0°) layout. These composites were also not subjected to catastrophic failure during the tests. The PEEK-based composites showed twice the flexural strength of the PI-based ones (0.4 and 0.2 GPa, respectively), while the flexural modulus was four times higher (60 and 15 GPa, correspondently). The reason was associated with different melt flowability of the used polymer matrices and varied inter- (intra)layer adhesion levels. The effect of adhesion was additionally studied by computer simulation using a developed two-dimensional FE-model. It considered initial defects between the binder and CF, as well as subsequent delamination and failure under loads. Based on the developed FE-model, the influence of defects and delamination on the strength properties of the composites was shown at different stress states, and the corresponding quantitative estimates were reported. Moreover, another model was developed to determine the three-point flexural properties of the composites reinforced with CF and carbon fabric, taking into account different fiber layouts. It was shown within this model framework that the flexural strength of the studied composites could be increased by an order of magnitude by enhancing the adhesion level (considered through the contact area between CF and the binder).

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Reference31 articles.

1. The Structural Integrity of Carbon Fiber Composites;Beaumont,2017

2. Revolutionizing Aircraft Materials and Processes;Pantelakis,2020

3. The effect of thermally desized carbon fibre reinforcement on the flexural and impact properties of PA6, PPS and PEEK composite laminates: A comparative study

4. Effect of consolidation force on interlaminar shear strength of CF/PEEK laminates manufactured by laser-assisted forming

5. Thermoplastics and Thermoplastic–Matrix Composites for Lightweight Automotive Structures;Mallick,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3