A Bacteria and Cell Repellent Zwitterionic Polymer Coating on Titanium Base Substrates towards Smart Implant Devices

Author:

Es-Souni Mona,Es-Souni Martha,Bakhti HamzahORCID,Gülses Aydin,Fischer-Brandies Helge,Açil Yahya,Wiltfang Jörg,Flörke Christian

Abstract

Biofouling and biofilm formation on implant surfaces are serious issues that more than often lead to inflammatory reactions and the necessity of lengthy post-operation treatments or the removal of the implant, thus entailing a protracted healing process. This issue may be tackled with a biocompatible polymeric coating that at the same time prevents biofouling. In this work, oxygen plasma-activated silanized titanium substrates are coated with poly(sulfobetaine methacrylate), a zwitterionic antibiofouling polymer, using photopolymerization. The characterization of polymer films includes FT-IR, AFM, and adhesion strength measurements, where adhesion strength is analyzed using a cylindrical flat punch indenter and water contact angle (WCA) measurements. Both cytotoxicity analysis with primary human fibroblasts and fluorescence microscopy with fibroblasts and plaque bacteria are also performed is this work, with each procedure including seeding on coated and control surfaces. The film morphology obtained by the AFM shows a fine structure akin to nanoropes. The coatings can resist ultrasonic and sterilization treatments. The adhesion strength properties substantially increase when the films are soaked in 0.51 M of NaCl prior to testing when compared to deionized water. The coatings are superhydrophilic with a WCA of 10° that increases to 15° after dry aging. The viability of fibroblasts in the presence of coated substrates is comparable to that of bare titanium. When in direct contact with fibroblasts or bacteria, marginal adhesion for both species occurs on coating imperfections. Because photopolymerization can easily be adapted to surface patterning, smart devices that promote both osseointegration (in non-coated areas) and prevent cell overgrowth and biofilm formation (in coated areas) demonstrate practical potential.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3