Experimental Study on Angular Flexural Performance of Multiaxis Three Dimensional (3D) Polymeric Carbon Fiber/Cementitious Concretes

Author:

Ozdemir HuseyinORCID,Bilisik KadirORCID

Abstract

Multiaxis three-dimensional (3D) continuous polymeric carbon fiber/cementitious concretes were introduced. Their angular (off-axis) flexural properties were experimentally studied. It was found that the placement of the continuous carbon fibers and their in-plane angular orientations in the pristine concrete noticeably influenced the angular flexural strength and the energy absorption behavior of the multiaxis 3D concrete composite. The off-axis flexural strength of the uniaxial (C-1D-(0°)), biaxial (C-2D-(0°), and C-2D-(90°)), and multiaxial (C-4D-(0°), C-4D-(+45°) and C-4D-(−45°)) concrete composites were outstandingly higher (from 36.84 to 272.43%) than the neat concrete. Their energy absorption capacities were superior compared to the neat concrete. Fractured four directional polymeric carbon fiber/cementitious matrix concretes limited brittle matrix failure and a broom-like fracture phenomenon on the filament bundles, filament-matrix debonding and splitting, and minor filament entanglement. Multiaxis 3D polymeric carbon fiber concrete, especially the C-4D structure, controlled the crack phenomena and was considered a damage-tolerant material compared to the neat concrete.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Reference99 articles.

1. Textile Reinforced Concrete: State-of-the-Art Report of Rilem Technical Committee 201—Trc: Textile Reinforced Concrete;Brameshuber,2006

2. Textile Reinforced Concrete—Realization in applications;Hegger,2008

3. Fibre Reinforced Cementitious Composites;Bentur,1990

4. Textile Fibre Composites in Civil Engineering;Triantafillou,2016

5. Textile reinforced concrete-overview, experimental and theoretical investigations;Haubler-Combe

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Classification of fiber reinforcement architecture;Advanced Structural Textile Composites Forming;2025

2. 3D winding path modeling method with fiber overlap effect;Composite Structures;2024-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3