Phase and Structure Behavior vs. Electromechanical Performance of Electrostrictive P(VDF-HFP)/ZnO Composite Nanofibers

Author:

Tohluebaji Nikruesong,Thainiramit PanuORCID,Putson Chatchai,Muensit NantakanORCID

Abstract

In this work, we improved the electromechanical properties, electrostrictive behavior and energy-harvesting performance of poly(vinylidenefluoridene-hexafluoropropylene) P(VDF-HFP)/zinc oxide (ZnO) composite nanofibers. The main factor in increasing their electromechanical performance and harvesting power based on electrostrictive behavior is an improved coefficient with a modified crystallinity phase and tuning the polarizability of material. These blends were fabricated by using a simple electrospinning method with varied ZnO contents (0, 5, 10, 15 and 20 wt%). The effects of the ZnO nanoparticle size and content on the phase transformation, dielectric permittivity, strain response and vibration energy harvesting were investigated. The characteristics of these structures were evaluated utilizing SEM, EDX, XRD, FT-IR and DMA. The electrical properties of the fabrication samples were examined by LCR meter as a function of the concentration of the ZnO and frequency. The strain response from the electric field was observed by the photonic displacement apparatus and lock-in amplifier along the thickness direction at a low frequency of 1 Hz. Moreover, the energy conversion behavior was determined by an energy-harvesting setup measuring the current induced in the composite nanofibers. The results showed that the ZnO nanoparticles’ component effectively achieves a strain response and the energy-harvesting capabilities of these P(VDF-HFP)/ZnO composites nanofibers. The electrostriction coefficient tended to increase with a higher ZnO content and an increasing dielectric constant. The generated current increased with the ZnO content when the external electric field was applied at a vibration of 20 Hz. Consequently, the ZnO nanoparticles dispersed into electrostrictive P(VDF-HFP) nanofibers, which offer a large power density and excellent efficiency of energy harvesting.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3