Digitalization in the Renewable Energy Sector

Author:

El Zein Musadag1,Gebresenbet Girma1ORCID

Affiliation:

1. Department of Energy and Technology, Swedish University of Agricultural Sciences, P.O. Box 7032, 75007 Uppsala, Sweden

Abstract

This study explored the association between renewable energy uptake and digitalization in the sector by reviewing relevant literature (published 2010–2022), with the aim of identifying the existing utilization of digital technologies within the sector, challenges to adoption, and future prospects. Different search engines (SCOPUS, Web of Science, and Google Scholar) were used to locate relevant papers and documents. The results revealed the high significance of digital technologies in supporting the renewable energy sector, with high costs and security risks representing the key challenges. Most papers reviewed had a positive outlook, but recommended further research and development for effective energy transition and resilient infrastructure. The current drivers of the integration of digital technologies to support the diffusion of renewable energy sources appear to extend beyond energy demand and involve many aspects of sustainability and sustainable development. Compared with previous reviews, this work has unique scope and novelty since it considers the bigger picture of the coupling between digitalization and the renewable energy sector, with a greater focus on critical areas in these two interconnected bodies that need to be addressed. The relatively small sample of relevant papers (69 from 836 hits) located in the literature review confirms the need for more research covering the subject in greater depth.

Publisher

MDPI AG

Reference39 articles.

1. How Decarbonization, Digitalization and Decentralization are changing key power infrastructures;Favuzza;Renew. Sustain. Energy Rev.,2018

2. IEA (2023, December 02). Digitalisation—Energy System. Available online: https://www.iea.org/energy-system/decarbonisation-enablers/digitalisation.

3. (2023, December 14). State of the IoT 2020: 12 Billion IoT Connections. Available online: https://iot-analytics.com/state-of-the-iot-2020-12-billion-iot-connections-surpassing-non-iot-for-the-first-time/.

4. The Energy Transition: Navigating the Shift Towards Renewables in the Oil and Gas Industry;Alagoz;J. Energy Nat. Resour.,2023

5. Zakeri, B., Paulavets, K., Barreto-Gomez, L., Echeverri, L.G., Pachauri, S., Boza-Kiss, B., Zimm, C., Rogelj, J., Creutzig, F., and Ürge-Vorsatz, D. (2022). Pandemic, War, and Global Energy Transitions. Energies, 15.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3