Wind-Speed Multi-Step Forecasting Based on Variational Mode Decomposition, Temporal Convolutional Network, and Transformer Model

Author:

Zhang Shengcai12,Zhu Changsheng1,Guo Xiuting1ORCID

Affiliation:

1. School of Computer and Communication, Lanzhou University of Technology, Lanzhou 730050, China

2. School of Cyber Security, Gansu University of Political Science and Law, Lanzhou 730070, China

Abstract

Reliable and accurate wind-speed forecasts significantly impact the efficiency of wind power utilization and the safety of power systems. In addressing the performance enhancement of transformer models in short-term wind-speed forecasting, a multi-step prediction model based on variational mode decomposition (VMD), temporal convolutional network (TCN), and a transformer is proposed. Initially, the Dung Beetle Optimizer (DBO) is utilized to optimize VMD for decomposing non-stationary wind-speed series data. Subsequently, the TCN is used to extract features from the input sequences. Finally, the processed data are fed into the transformer model for prediction. The effectiveness of this model is validated by comparison with six other prediction models across three datasets, demonstrating its superior accuracy in short-term wind-speed forecasting. Experimental findings from three distinct datasets reveal that the developed model achieves an average improvement of 52.1% for R2. To the best of our knowledge, this places our model at the leading edge of wind-speed prediction for 8 h and 12 h forecasts, demonstrating MSEs of 1.003 and 0.895, MAEs of 0.754 and 0.665, and RMSEs of 1.001 and 0.946, respectively. Therefore, this research offers significant contributions through a new framework and demonstrates the utility of the transformer in effectively predicting short-term wind speed.

Funder

National Natural Science Foundation of China

Foundation Project of Gansu Provincial Department of Education

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3