Design and Analysis of Slotted Waveguide Antenna Radiating in a “Plasma-Shaped” Cavity of an ECR Ion Source

Author:

Mauro Giorgio SebastianoORCID,Torrisi GiuseppeORCID,Leonardi OrnellaORCID,Pidatella AngeloORCID,Sorbello GinoORCID,Mascali David

Abstract

The design of a microwave antenna sustaining a high-energy-content plasma in Electron Cyclotron Resonance Ion Sources (ECRISs) is, under many aspects, similar to the design of a conventional antenna but presenting also peculiarities because of the antenna lying in a cavity filled by an anisotropic plasma. The plasma chamber and microwave injection system design plays a critical role in the development of future ECRISs. In this paper, we present the numerical study of an unconventionally shaped plasma cavity, in which its geometry is inspired by the typical star-shaped ECR plasma, determined by the electrons trajectories as they move under the influence of the plasma-confining magnetic field. The cavity has been designed by using CST Studio Suite with the aim to maximize the on-axis electric field, thus increasing the wave-to-plasma absorption. As a second step, an innovative microwave injection system based on side-coupled slotted waveguides is presented. This new launching scheme allows an uniform power distribution inside the plasma cavity which could lead to an increase of ion source performances in terms of charge states and extracted currents when compared to the conventional axial microwave launch scheme. Finally, the use of both the “plasma-shaped” cavity and the microwave side coupled scheme could make the overall setup more compact.

Publisher

MDPI AG

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Ku-Band Twisted Slotted Waveguide Antenna for Innovative "Plasma-Shaped" Cavity of Ion Sources;2023 17th European Conference on Antennas and Propagation (EuCAP);2023-03-26

2. An Innovative Superconducting Magnetic Trap for Probing β-decay in Plasmas;Frontiers in Physics;2022-07-04

3. Redefining plasma chambers for ECR Ion Sources: the IRIS structure;Journal of Physics: Conference Series;2022-04-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3