Chaotic Jaya Approaches to Solving Electromagnetic Optimization Benchmark Problems

Author:

Coelho Leandro dos S.ORCID,Mariani Viviana C.ORCID,Goudos Sotirios K.ORCID,Boursianis Achilles D.ORCID,Kokkinidis Konstantinos,Kantartzis Nikolaos V.ORCID

Abstract

The Jaya optimization algorithm is a simple, fast, robust, and powerful population-based stochastic metaheuristic that in recent years has been successfully applied in a variety of global optimization problems in various application fields. The essential idea of the Jaya algorithm is that the searching agents try to change their positions toward the best obtained solution by avoiding the worst solution at every generation. The important difference between Jaya and other metaheuristics is that Jaya does not require the tuning of its control, except for the maximum number of iterations and population size parameters. However, like other metaheuristics, Jaya still has the dilemma of an appropriate tradeoff between its exploration and exploitation abilities during the evolution process. To enhance the convergence performance of the standard Jaya algorithm in the continuous domain, chaotic Jaya (CJ) frameworks based on chaotic sequences are proposed in this paper. In order to obtain the performance of the standard Jaya and CJ approaches, tests related to electromagnetic optimization using two different benchmark problems are conducted. These are the Loney’s solenoid benchmark and a brushless direct current (DC) motor benchmark. Both problems are realized to evaluate the effectiveness and convergence rate. The simulation results and comparisons with the standard Jaya algorithm demonstrated that the performance of the CJ approaches based on Chebyshev-type chaotic mapping and logistic mapping can be competitive results in terms of both efficiency and solution quality in electromagnetics optimization.

Publisher

MDPI AG

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enlarging the domain of attraction in nonlinear system with input saturation;2023 20th International Multi-Conference on Systems, Signals & Devices (SSD);2023-02-20

2. A comprehensive review on Jaya optimization algorithm;Artificial Intelligence Review;2022-09-28

3. Self-adaptive classification learning hybrid JAYA and Rao-1 algorithm for large-scale numerical and engineering problems;Engineering Applications of Artificial Intelligence;2022-09

4. War Strategy Optimization Algorithm: A New Effective Metaheuristic Algorithm for Global Optimization;IEEE Access;2022

5. A Novel Chaotic Artificial Gorilla Troops Optimizer and Its Application for Fundus Images Segmentation;Proceedings of the International Conference on Advanced Intelligent Systems and Informatics 2021;2021-11-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3