Deep Feature Extraction and Classification of Android Malware Images

Author:

Singh Jaiteg,Thakur Deepak,Ali FarmanORCID,Gera Tanya,Kwak Kyung SupORCID

Abstract

The Android operating system has gained popularity and evolved rapidly since the previous decade. Traditional approaches such as static and dynamic malware identification techniques require a lot of human intervention and resources to design the malware classification model. The real challenge lies with the fact that inspecting all files of the application structure leads to high processing time, more storage, and manual effort. To solve these problems, optimization algorithms and deep learning has been recently tested for mitigating malware attacks. This manuscript proposes Summing of neurAl aRchitecture and VisualizatiOn Technology for Android Malware identification (SARVOTAM). The system converts the malware non-intuitive features into fingerprint images to extract the quality information. A fine-tuned Convolutional Neural Network (CNN) is used to automatically extract rich features from visualized malware thus eliminating the feature engineering and domain expert cost. The experiments were done using the DREBIN dataset. A total of fifteen different combinations of the Android malware image sections were used to identify and classify Android malware. The softmax layer of CNN was substituted with machine learning algorithms like K-Nearest Neighbor (KNN), Support Vector Machine (SVM), and Random Forest (RF) to analyze the grayscale malware images. It observed that CNN-SVM model outperformed original CNN as well as CNN-KNN, and CNN-RF. The classification results showed that our method is able to achieve an accuracy of 92.59% using Android certificates and manifest malware images. This paper reveals the lightweight solution and much precise option for malware identification.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 73 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Image-based detection and classification of Android malware through CNN models;Proceedings of the 19th International Conference on Availability, Reliability and Security;2024-07-30

2. Recent advances in artificial intelligence towards the sustainable future of agri-food industry;Food Chemistry;2024-07

3. Revolutionizing Lung Cancer Prognosis Through CNN-based Predictive Models;2024 3rd International Conference on Applied Artificial Intelligence and Computing (ICAAIC);2024-06-05

4. CyberSentinel: A Transparent Defense Framework for Malware Detection in High-Stakes Operational Environments;Sensors;2024-05-25

5. Revolutionizing Tea Leaf Disease Detection for Sustainable Cultivation using Convolutional Neural Network;2024 5th International Conference for Emerging Technology (INCET);2024-05-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3