Variability of Trends in Precipitation across the Amazon River Basin Determined from the CHIRPS Precipitation Product and from Station Records

Author:

Paca Victor Hugo da MottaORCID,Espinoza-Dávalos GonzaloORCID,Moreira DanielORCID,Comair Georges

Abstract

The Amazon River Basin is the largest rainforest in the world. Long-term changes in precipitation trends in the basin can affect the continental water balance and the world’s climate. The precipitation trends in the basin are not spatially uniform; estimating these trends only at locations where station data are available has an inherent bias. In the present research, the spatially distributed annual precipitation trends were studied in the Amazon River Basin from the year 1981 to 2017 using the Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS) product. The precipitation trends were also cross-validated at locations where station data were available. The research also identifies clusters within the basin where trends showed a larger increase (nine clusters) or decrease in precipitation (10 clusters). The overall precipitation trend in the Amazon River Basin over 37 years showed a 2.8 mm/year increase, with a maximum of 45.1 mm/year and minimum of −37.9 mm/year. The highest positive cluster was in Cuzco in the Ucayali River basin, and the lowest negative was in Santa Cruz de la Sierra, in the upstream Madeira River basin. The total volume of the incoming precipitation was 340,885.1 km3, with a withdrawal of −244,337.1 km3. Cross-validation was performed using 98 in situ stations with more than 20 years of recorded data, obtaining an R2 of 0.981, a slope of 1.027, and a root mean square error (RMSE) of 363.6 mm/year. The homogeneous, standardized, and continuous long-term time series provided by CHIRPS is a valuable product for basins with a low-density network of stations such as the Amazon Basin.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference51 articles.

1. A global satellite-assisted precipitation climatology

2. Guide to Meterological Instruments and Methods of Observation,2008

3. Condições de operação e implantação de estaçòes da rede hidrométrica da Amazônia Oriental, Estado do Pará;Victor Hugo da Motta;XIX Simpósio Bras. Recur. Hídricos,2011

4. Sobrevoo Para Verificar as Condições da Pista dos Ayaramã Perimetral Norte. YouTube (2012)https://www.youtube.com/watch?v=cAREsoWmPoc

5. On the hydrological cycle of the Amazon basin; a historical review and current state-of-the-art;Marengo;Rev. Bras. Meteorol.,2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3