Numerical Study of Circulation and Seasonal Variability in the Southwestern Yellow Sea

Author:

He Zhanyuan,Zhu Shouxian,Sheng Jinyu

Abstract

A nested-grid ocean circulation modelling system (NGMS-swYS) is used for examining the impact of tides and winds on the three-dimensional (3D) circulation, hydrography and seasonal variability over the southwestern Yellow Sea (swYS). The modelling system is based on the Princeton Ocean Model (POM) and uses a nested-grid setup, with a fine-resolution (~2.7 km) inner model nested inside a coarse-resolution (~9.0 km) outer model. The domain of the outer model covers the China Seas and adjacent deep ocean waters. The domain of the fine-resolution inner model covers the swYS and adjacent waters. The NGMS-swYS is driven by a suite of external forcings, including the atmospheric forcing, tides, freshwater discharge and currents specified at the lateral open boundaries. A comparison of model results with observations and previous numerical studies demonstrates the satisfactory performance of the NGMS-swYS in simulating tides, seasonal mean circulation and distribution of temperature and salinity. Five additional numerical experiments were conducted using NGMS-swYS with different combinations of external forcing. Analysis of model results demonstrates that the monthly mean circulation over the swYS is affected significantly by tides and winds, with large seasonal variability. The northward Subei Shoal Current occurred in both winter and summer months in 2015, with persistent strong southeastward mean currents induced by tides along the 50 m isobath. Model results also demonstrated that strong wind-induced currents occurred with large sea surface cooling during Typhoon Chan-Hom.

Funder

Natural Sciences and Engineering Research Council

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3