Maximum Run-Up and Alongshore Mass Transport Due to Edge Waves

Author:

Yoo Ho-Jun,Kim Hyoseob,Jang Changhwan,Kim Ki-Hyun,Kang Tae-Soon

Abstract

The edge wave on a uniform-sloped seabed was described by the velocity-potential function by Mok and Yeh in 1999. Edge waves cannot be extended above a certain level from the still-water level, and the upper limit of the run-up of the edge waves for given conditions is found here. In this study, quantitative mass transport by the edge waves of the beach is introduced. The maximum run-up height is decided from the wave’s amplitude at shoreline, and the maximum run-up distance from the shoreline is proportional to the wavelength of the edge waves. The fluid alongshore-mass-transport profile shows that the strongest mass transport rate corresponds to the position offshoreward multiplied by 0.0362 times the wavelength, and its magnitude is 1.23 times the mass-transport rate at the shoreline. The maximum cross-sectional total mass-transport rate is 0.214 times the mass transport at the shoreline, multiplied by the wavelength for the maximum run-up condition. This study suggests that edge waves cannot be increased infinitely and that there is a maximum run-up on the coast.

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3