Hydrogen Refueling Stations and Carbon Emission Reduction of Coastal Expressways: A Deployment Model and Multi-Scenario Analysis

Author:

Wang ZheORCID,Wang Dongxing,Zhao Fan,Han FenghuiORCID,Ji YulongORCID,Cai Wenjian

Abstract

Hydrogen is considered to the ultimate solution to achieve carbon emission reduction due to its wide sources and high calorific value, as well as non-polluting, renewable, and storable advantages. This paper starts from the coastal areas, uses offshore wind power hydrogen production as the hydrogen source, and focuses on the combination of hydrogen supply chain network design and hydrogen expressway hydrogen refueling station layout optimization. It proposes a comprehensive mathematical model of hydrogen supply chain network based on cost analysis, which determined the optimal size and location of hydrogen refueling stations on hydrogen expressways in coastal areas. Under the multi-scenario and multi-case optimization results, the location of the hydrogen refueling station can effectively cover the road sections of each case, and the unit hydrogen cost of the hydrogen supply chain network is between 11.8 and 15.0 USD/kgH2. Meanwhile, it was found that the transportation distance and the number of hydrogen sources play a decisive role on the cost of hydrogen in the supply chain network, and the location of hydrogen sources have a decisive influence on the location of hydrogen refueling stations. In addition, carbon emission reduction results of hydrogen supply chain network show that the carbon emission reduction per unit hydrogen production is 15.51 kgCO2/kgH2 at the production side. The CO2 emission can be reduced by 68.3 kgCO2/km and 6.35 kgCO2/kgH2 per unit mileage and per unit hydrogen demand at the application side, respectively. The layout planning utilization of hydrogen energy expressway has a positive impact on energy saving and emission reduction.

Funder

National Natural Science Foundation of China

Dalian High Level Talent Innovation Support Program

China Postdoctoral Science Foundation

Natural Science Foundation of Liaoning Province

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3