Mitigation of Ice-Induced Vibration of Offshore Platform Based on Gated Recurrent Neural Network

Author:

Zhang PengORCID,Wu Zhihao,Cui Chunyi,Yao Ruqing

Abstract

Ice-induced vibration is one of the major risks that face the offshore platform located in cold regions. In this paper, the gated recurrent neural network (GRNN) is utilized to predict and suppress the response of offshore platforms subjected to ice load. First, a simplified model of the offshore platform is derived and validated based on the finite element model (FEM). The time history of the floating ice load is generated using the harmonic superposition method. Gated Recurrent Unit Network (GRU) and the Long-Short-Term Memory Network (LSTM) are composed in MATLAB to predict the behavior of the off-shore platform. Afterward, the linear quadratic regulator (LQR) control algorithm is used to calculate the controlling force for the training of the GRU/LSTM-based prediction controller. Numerical results show that the ice-induced vibration response prediction method based on GRU network design can predict the structural response with satisfying accuracy, and the ice-induced vibration response control method based on the LSTM network and GRU network design can learn the LQR method well and achieve good control effect. Time lag and other problems that the vibration control programs often encountered were solved well.

Funder

National Natural Science Foundation of China

United Navigation Foundation of Liaoning Province

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Reference49 articles.

1. Recent Advances in Ice Mechanics in Canada

2. Field Observations of Ice Action on Concrete Structures in the Baltic Sea;Engelbrektson;Concr. Int.,1985

3. Sea Ice Management for Oil and Gas Platforms in the Bohai Sea

4. Numerical modeling of water and ice dynamics for analysis of flow around the Kiezmark Bridge piers;Szydłowski,2018

5. Numerical investigation of tsunami-borne debris damming loads on a coastal bridge;Istrati;Proceedings of the 17 World Conference on Earthquake Engineering,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3