Principal Parameters Analysis of the Double-Elastic-Constrained Flapping Hydrofoil for Tidal Current Energy Extraction

Author:

Zhou JunweiORCID,Yan Wenhui,Mei LeiORCID,Cong Lixin,Shi WeichaoORCID

Abstract

Taking the rigid NACA0012 airfoil as the object, the key structural parameters of the spring–mass system that govern the dynamics of the double-elastic-constrained flapping hydrofoil are numerically studied in this paper. A two-dimensional numerical model, based on the CFD software FINE/Marine, is established to investigate the influence of the spring stiffness coefficient, frequency ratio, and damping coefficient on the motion and performance of the flapping hydrofoil. This study demonstrates that when the structural parameters are adequately adjusted, the power factor exceeding 1.0 has been achieved, and the corresponding efficiency is up to 37.8%. Moreover, this system can start and work within a wide range of damping coefficients. However, the hydraulic efficiency and power coefficient are sensitive to the change in damping coefficient, so it is very necessary to design an appropriate power output. Lastly, the most obvious parameter affecting the energy acquisition performance is the spring stiffness coefficients. Frequency ratios in the two directions have little influence on the peak value of the power coefficient, but they will cause the change of damping coefficients of the peak point. The key structural parameters studied in this paper provide a useful guideline for an optimized design of this interesting system through searching for the best performance.

Funder

National Natural Science Foundation of China

Advanced aviation power innovation workstation project

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Tidal and Ocean Current Energy;Journal of Marine Science and Engineering;2023-03-23

2. Thrust Enhancement of DTMB 5415 with Elastic Flapping Foil in Regular Head Waves;Journal of Marine Science and Engineering;2023-03-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3