Ship Pitch Prediction Based on Bi-ConvLSTM-CA Model

Author:

Fu Huixuan,Gu Zhiqiang,Wang Yuchao

Abstract

When a ship is sailing at sea, its pitch angle will be affected by ship motions such as turning angle, relative wind speed, relative wind direction, velocity in surge and velocity in sway of the ship. Due to the randomness of ship motion attitude and the difficulty of capturing the motion rules, traditional machine learning models, statistical learning models and single deep learning models cannot accurately capture the correlation information between multiple variables, which results in poor prediction accuracy. To solve this problem, the bidirectional convolutional long short-term memory neural network (Bi-ConvLSTM) and channel attention (CA) for ship pitch prediction are used to build a Bi-ConvLSTM-CA model in this paper. The Bi-ConvLSTM-CA prediction model can simultaneously extract the time information and spatial information of the ship motion data, and use the channel attention mechanism to process the output of different time steps to obtain the corresponding weight of each channel. Using the weights to do dot product with the output of Bi-ConvLSTM, the resulting attention mechanism output is processed to produce predicted value by the fully connected layer. Compared with other models, the RMSE index of Bi-ConvLSTM-CA model decreased by at least 28.20%; the MAPE index decreased by at least 29.39%; the MAE index decreased by at least 22.68%. The experimental results of real ship data show that the proposed Bi-ConvLSTM-CA model has a significant reduction in mean absolute percentage error (MAPE), mean square error (MSE) and mean absolute error (MAE) compared with other advanced models, which verifies the effectiveness of the Bi-ConvLSTM-CA model in predicting ship pitch angle.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Reference50 articles.

1. On the parametric rolling of ships using a numerical simulation method

2. Real-time deterministic prediction of wave-induced ship responses based on short-time measurements

3. A decision making algorithm for an integrated system of UAV landing on the moving ship gripper;Sharov;Proceedings of the 22nd Saint Petersburg International Conference on Integrated Navigation Systems (ICINS 2015),2015

4. Prediction of the gripping device position in case of UAV landing on a moving ship in the con-ditions of ship motions;Sharov;Proceedings of the 20th Saint Petersburg International Conference on Integrated Navigation Sys-tems (ICINS 2013),2013

5. Data-driven uncertainty and sensitivity analysis for ship motion modeling in offshore operations

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3