Virus-Targeted Transcriptomic Analyses Implicate Ranaviral Interaction with Host Interferon Response in Frog Virus 3-Infected Frog Tissues

Author:

Tian Yun,De Jesús Andino Francisco,Khwatenge Collins N.ORCID,Li Jiuyi,Robert JacquesORCID,Sang YongmingORCID

Abstract

Ranaviruses (Iridoviridae), including Frog Virus 3 (FV3), are large dsDNA viruses that cause devastating infections globally in amphibians, fish, and reptiles, and contribute to catastrophic amphibian declines. FV3’s large genome (~105 kb) contains at least 98 putative open reading frames (ORFs) as annotated in its reference genome. Previous studies have classified these coding genes into temporal classes as immediate early, delayed early, and late viral transcripts based on their sequential expression during FV3 infection. To establish a high-throughput characterization of ranaviral gene expression at the genome scale, we performed a whole transcriptomic analysis (RNA-Seq) using total RNA samples containing both viral and cellular transcripts from FV3-infected Xenopus laevis adult tissues using two FV3 strains, a wild type (FV3-WT) and an ORF64R-deleted recombinant (FV3-∆64R). In samples from the infected intestine, liver, spleen, lung, and especially kidney, an FV3-targeted transcriptomic analysis mapped reads spanning the full-genome coverage at ~10× depth on both positive and negative strands. By contrast, reads were only mapped to partial genomic regions in samples from the infected thymus, skin, and muscle. Extensive analyses validated the expression of almost all of the 98 annotated ORFs and profiled their differential expression in a tissue-, virus-, and temporal class-dependent manner. Further studies identified several putative ORFs that encode hypothetical proteins containing viral mimicking conserved domains found in host interferon (IFN) regulatory factors (IRFs) and IFN receptors. This study provides the first comprehensive genome-wide viral transcriptome profiling during infection and across multiple amphibian host tissues that will serve as an instrumental reference. Our findings imply that Ranaviruses like FV3 have acquired previously unknown molecular mimics, interfering with host IFN signaling during evolution.

Funder

National Science Foundation

National Institute of Food and Agriculture

National Institutes of Health

Publisher

MDPI AG

Subject

Virology,Infectious Diseases

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3