Evaluating Microbial Biofertilizers for Root Colonization Potential in Narra (Pterocarpus indicus Willd.) and Their Efficacy in Heavy Metal Remediation

Author:

Magsayo Bethlehem Marie T.1,Aggangan Nelly S.2,Gilbero Dennis M.3,Amparado Ruben F.14ORCID

Affiliation:

1. Environmental Science Graduate Program, Department of Biological Sciences, College of Science and Mathematics, Mindanao State University-Iligan Institute of Technology, Iligan City 9200, Lanao del Norte, Philippines

2. Biotechnology for Agriculture and Forestry, National Institute of Molecular Biology and Biotechnology, University of the Philippines, Los Baños 4030, Laguna, Philippines

3. College of Agriculture, Agusan del Sur State College of Agriculture and Technology, Bunawan 8506, Agusan del Sur, Philippines

4. Premier Research Institute of Science and Mathematics (PRISM), Mindanao State University-Iligan Institute of Technology, Iligan City 9200, Lanao del Norte, Philippines

Abstract

Bioremediation technology, another strategy known for restoring degraded environments, utilizes beneficial microorganisms, including arbuscular mycorrhizal fungi (AMF) and nitrogen-fixing bacteria (NFB). Despite its potential, the biological processes of these microorganisms in contaminated sites remain poorly understood, hindering effective pollutant toxicity reduction. Establishing a connection between plant root systems and these microorganisms is crucial for enabling plant survival in heavy metal-contaminated soils. Narra (Pterocarpus indicus Willd.), a leguminous plant, typically associates with symbiotic nitrogen-fixing bacteria, forming nodules in the roots. Additionally, Narra forms a symbiotic relationship with AMF, phosphorus-fixing microbes, making it an ideal tree species for rehabilitating mined-out areas. In this study, five microbial biofertilizers, namely: MYKORICH®, MYKOVAM®, newMYC, newNFB, and combined newMYC+newNFB, plus a control were used to test their root colonization potential on Narra seedlings grown in nickel (Ni) and gold (Au) mined-out soils collected from Taganito Mining Corporation (TMC) and Manila Mining Corporation (MMC) in Claver and Placer, Surigao del Norte, Philippines, respectively. The results showed that newMYC had the highest root colonization in Ni mined-out soil, while MYKORICH® excelled in Au mined-out soil. The AMF spore count was highest in MYKORICH® for Ni mined-out soil and newMYC in Au mined-out soil. NFB colonization was highest in newMYC-treated seedlings for Ni mined-out soil and combined newMYC+newNFB for Au mined-out soil. The microbial biofertilizers utilized in this research, such as MY-KORICH®, MYKOVAM, newMYC, newNFB, and combined newNFB and newMYC, naturally occur in the environment and can be easily extracted. This cost-effective characteristic provides an advantage for mining companies seeking treatments for soil amelioration to rehabilitate mined-out areas.

Funder

Department of Science and Technology-National Research Council of the Philippines

DOST-ASTHRDP

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3