An Accident Model with Considering Physical Processes for Indoor Environment Safety

Author:

Yang ZhengguoORCID,Lim Yuto,Tan Yasuo

Abstract

Accident models provide a conceptual representation of accident causation. They have been applied to environments that have been exposed to poisonous or dangerous substances that are hazardous in nature. The home environment refers to the indoor space with respect to the physical processes the of indoor climate, e.g., temperature change, which are not hazardous in general. However, it can be hazardous when the physical process is in some states, e.g., a state of temperature that can cause heat stroke. If directly applying accident models in such a case, the physical processes are missing. To overcome this problem, this paper proposes an accident model by extending the state-of-the-art accident model, i.e., Systems-Theoretic Accident Model and Process (STAMP) with considering physical processes. Then, to identify causes of abnormal system behaviors that result in physical process anomalies, a hazard analysis technique called System-Theoretic Process Analysis (STPA) is tailored and applied to a smart home system for indoor temperature adjustment. The analytical results are documented by a proposed landscape genealogical layout documentation. A comparison with results by applying the original STPA was made, which demonstrates the effectiveness of the tailored STPA to apply in identifying causes in our case.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference48 articles.

1. Accident Analysis Models and Methods: Guidance for Safety Professionals;Underwood,2013

2. Engineering a Safer World: Systems Thinking Applied to Safety;Leveson,2011

3. FRAM: The Functional Resonance Analysis Method: Modelling Complex Socio-technical Systems;Hollnagel,2012

4. STAMP-based analysis of deepwater well control safety

5. STAMP-based analysis on the railway accident and accident spreading: Taking the China–Jiaoji railway accident for example

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3