Efficient Caching for Data-Driven IoT Applications and Fast Content Delivery with Low Latency in ICN

Author:

Hasan KamrulORCID,Jeong Seong-Ho

Abstract

Edge computing is a key paradigm for the various data-intensive Internet of Things (IoT) applications where caching plays a significant role at the edge of the network. This paradigm provides data-intensive services, computational activities, and application services to the proximity devices and end-users for fast content retrieval with a very low response time that fulfills the ultra-low latency goal of the 5G networks. Information-centric networking (ICN) is being acknowledged as an important technology for the fast content retrieval of multimedia content and content-based IoT applications. The main goal of ICN is to change the current location-dependent IP network architecture to location-independent and content-centric network architecture. ICN can fulfill the needs for caching to the vicinity of the edge devices without further storage deployment. In this paper, we propose an architecture for efficient caching at the edge devices for data-intensive IoT applications and a fast content access mechanism based on new clustering and caching procedures in ICN. The proposed cluster-based efficient caching mechanism provides the solution to the problem of the existing hash and on-path caching mechanisms, and the proposed content popularity mechanism increases the content availability at the proximity devices for reducing the content transfer time and packet loss ratio. We also provide the simulation results and mathematical analysis to prove that the proposed mechanism is better than other state-of-the-art caching mechanisms and the overall network efficiencies are increased.

Funder

Ministry of Trade, Industry and Energy

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3