Temperature Distribution Characteristics of Concrete during Fire Occurrence in a Tunnel

Author:

Kim SeungwonORCID,Shim JaewonORCID,Rhee Ji YoungORCID,Jung Daegyun,Park CheolwooORCID

Abstract

Fire in a tunnel or an underground structure is characterized by a rise in temperature above 1000 °C in 5–10 min, which is due to the characteristics of the closed space. The Permanent International Association of Road Congresses has reported that serious damage can occur in an underground structure as a consequence of high temperatures of up to 1400 °C when a fire accident involving a tank lorry occurs in an underground space. In these circumstances, it is difficult to approach the scene and extinguish the fire, and the result is often casualties and damage to facilities. When a concrete structure is exposed to a high temperature, spalling or dehydration occurs. As a result, the cross section of the structure is lost, and the structural stability declines to a great extent. Furthermore, the mechanical and thermal properties of concrete are degraded by the temperature hysteresis that occurs at high temperatures. Consequently, interest in the fire safety of underground structures, including tunnels, has steadily increased. This study conducted a fire simulation to analyze the effects of a fire caused by dangerous-goods vehicles on the tunnel structure. In addition, a fire exposure test of reinforced-concrete members was conducted using the Richtlinien für die Ausstattung und den Betrieb von Straßentunneln (RABT) fire curve, which is used to simulate a tunnel fire.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference12 articles.

1. Development of Fire Protection Design and Blast Resistance Methods of Tunnels and Bridges caused by Fire and Explosions of Vehicles;Shim;Korea Expressway Corp. Res. Inst. Rep.,2018

2. An Experimental Study on Thermal Damage and Spalling of Concrete Lining in Tunnel Fire;Kim;J. Korean Inst. Fire Sci. Eng.,2009

3. NCHRP Synthesis 415: Design Fires in Road Tunnels—A Synthesis of Highway Practice;Maevski,2011

4. Fire Cases and Damage Evaluations in Fire of Tunnels and Underground Structures;Shim;Mag. Korea Conc. Inst.,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3