Bluetooth Mesh Energy Consumption: A Model

Author:

Darroudi Seyed,Caldera-Sànchez Raül,Gomez CarlesORCID

Abstract

The recent publication of the Bluetooth Mesh standard is a remarkable milestone in the evolution of Bluetooth Low Energy (BLE). As a new technology in the Internet of Things (IoT) market, it is crucial to investigate the performance of Bluetooth Mesh. However, while a fundamental feature of Bluetooth Mesh is its suitability for energy-constrained devices, this aspect has not yet been properly considered in the literature. In this paper, we model the current consumption, lifetime and energy cost per delivered bit of a battery-operated Bluetooth Mesh sensor node. The model is based on measurements performed on a real hardware platform. Evaluation results quantify the impact of crucial Bluetooth Mesh parameters. Among others, we have found that a sensor device running on a simple 235 mAh battery, and sending a data message every 10 s, can achieve a lifetime of up to 15.6 months, whereas the asymptotic lifetime is 21.4 months.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Constrained Flooding Based on Time Series Prediction and Lightweight GBN in BLE Mesh;Sensors;2024-07-22

2. An Adaptive Duty Cycling Mechanism for Energy Efficiency in Bluetooth Mesh Networks;2024 IEEE Wireless Communications and Networking Conference (WCNC);2024-04-21

3. A Rapid Flooding Approach Based on Adaptive Delay and Low-Power Sleep for BLE Mesh Networks;IEEE Access;2024

4. Sustainable production: Leveraging energy-efficient data exchange protocols;E3S Web of Conferences;2024

5. Dynamic autonomous set-up of relays in Bluetooth mesh;2023 IEEE 28th International Conference on Emerging Technologies and Factory Automation (ETFA);2023-09-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3