Influence of Correlation Distance of Soil Parameters on Pile Foundation Failure Probability

Author:

Liu Chao123ORCID,Zhang Hongrui1ORCID,Yuan Ying123,Zhou Aihong123,Liu Weiwen1,Guo Wanying1

Affiliation:

1. School of Urban Geology and Engineering, Hebei GEO University, Shijiazhuang 050031, China

2. Hebei Technology Innovation Center for Intelligent Development and Control of Underground Built Environment, Shijiazhuang 050031, China

3. Key Laboratory of Intelligent Detection and Equipment for Underground Space of Beijing-Tianjin-Hebei Urban Agglomeration, Ministry of Natural Resources, Shijiazhuang 050031, China

Abstract

Spatial variability of soil parameter distribution is crucial to calculating the pile foundation failure probability. Traditional reliability design methods describe the dispersion degree of soil parameters with their point variance without considering the influence of correlation distance. In this paper, static cone penetration test data of a project site are used, and random field theory is introduced to describe the average spatial characteristics of soil parameters. Then, the method of spatial average is used to calculate the correlation distance of soil parameters in each foundation soil layer. Given the influence of the correlation distance, a variance reduction function is determined to convert point variance to spatial mean-variance and further calculate the failure probability of pile foundation with the Monte Carlo method to study the influence of correlation distance on pile foundation failure probability. Results show that the spatial variability of parameters can be better reflected, and project cost can be reduced by considering the influence of correlation distance during the pile foundation design process. These results lay a foundation for further research on the pile foundation reliability design method.

Funder

Natural Science Foundation of Hebei Province

Science and Technology Innovation Team Project of Hebei GEO University

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3