Affiliation:
1. Key Laboratory of Mariculture (Ministry of Education), Fisheries College, Ocean University of China, Qingdao 266003, China
2. Marine Development Affairs Center of Wendeng District, Weihai 264400, China
3. Department of Aquaculture and Aquatic Science, Kunsan National University, Gunsan 54150, Republic of Korea
Abstract
Seaweeds, as biofilters that remediate seawater eutrophication, have been widely applied in integrated cultivations for both ecological and economic benefits. Although Grateloupia turuturu (Rhodophyta) is considered as a qualified species in integrated maricultivation, its growth and biochemical performance under different nitrogen conditions are still unknown. Here, we cultured G. turuturu under two nitrogen sources (nitrate and ammonium) at six concentrations (0, 25, 50, 100, 200, and 400 µM) to investigate its growth and nitrogenous compounds (total and inorganic nitrogen, soluble protein, amino acids, and pigments) as well as the allocation pattern of nitrogen storage pools. Our results showed that G. turuturu was well acclimated to high concentrations of both nitrogen sources, and algal age played an important role in the preference of nitrogen sources. Most of the biochemical compositions in G. turuturu increased significantly with the increased concentrations of nitrogen, except for the protein and nitrate contents. Protein and residual organic nitrogen (RON, mainly amino acids) were found to be the two main nitrogen storage pools in G. turuturu. Our study revealed that G. turuturu can produce more profitable compositions at high nitrogen concentrations, making it a profitably promising biofilter to remediate eutrophication.
Funder
Fundamental Research Fund for the Central Universities
Young Talent Program of Ocean University of China
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献