Assessing Hydrological Performances of Bioretention Cells to Meet the LID Goals

Author:

Sun Yanwei1,Li Qingyun1,Yu Furong1ORCID,Ma Mingwei1,Xu Cundong2

Affiliation:

1. College of Water Resources, North China University of Water Resources and Electric Power, Zhengzhou 450011, China

2. School of Water Conservancy & Environment Engineering, Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, China

Abstract

BRCs (bioretention cells), one of many low-impact development (LID) practices, are increasingly utilized to lessen the amount of runoff while simultaneously improving the runoff quality. Because the goal of BRCs and LID designs, in general, is to mimic or replicate the pre-development hydrology, it is critical to evaluate the hydrologic and ecologic performances of the BRC facility from the perspective of replicating the pre-development hydrology. The metrics developed in this study were intended to represent the hydrologic regime including the runoff volume control metrics, peak flow frequency exceedance curve, and flow duration curve. We also used a hydrological indicator of T0.5, the fraction of a multi-year period in which the flow exceeds the 0.5-year return period storm to represent the performances regarding downstream ecology. The indicators were compared to their pre-development values to determine how closely they reflected and replicated the pre-development state. A long-term stormwater management model (SWMM) model was developed to examine conditions before and after development and water movement in BRCs. When the BRCs facilities areas are 5% of the entire impervious study area, key findings show that: (1) BRCs have significant runoff volume control performances. (2) The peak flow frequency exceedance curve with BRCs could fully match the pre-development scenario for minor rainfall events compared to the 0.1-year storm. Flow duration curves with BRCs showed that, the frequency, magnitude, and duration of small flows that occurred for more than 90% of the total time closely matched those of pre-development hydrology. (3) T0.5 with BRCs showed significant improvement compared with the value of the area with no BRCs and was close to the pre-development T0.5. The findings presented in this study indicated the significant performance of BRCs in improving downstream ecology.

Funder

Basic Public Welfare Research Program of Zhejiang Province

Major Science and Technology Program of Zhejiang Province

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3