Optimization of PET Particle-Reinforced Epoxy Resin Composite for Eco-Brick Application Using the Response Surface Methodology

Author:

Adiyanto Okka12ORCID,Mohamad Effendi13ORCID,Irianto 4,Jaafar Rosidah3,Faishal Muhammad12,Rasyid Muhammad Izzudin2

Affiliation:

1. Fakulti Kejuruteraan Pembuatan, University Teknikal Malaysia Melaka, Jalan Hang Tuah Jaya Durian Tunggal, Melaka 76100, Malaysia

2. Department of Industrial Engineering, Universitas Ahmad Dahlan, Jalan Jendral Ahmad Yani, Bantul 55166, Indonesia

3. Fakulti Teknologi Kejuruteraan Mekanikal & Pembuatan, University Teknikal Malaysia Melaka, Jalan Hang Tuah Jaya Durian Tunggal, Melaka 76100, Malaysia

4. Department General Education, Faculty of Resilence, Rabdan Academy, Al Dhafeer Street, Abu Dhabi 22401, United Arab Emirates

Abstract

Brick is a common building material that is used in society for constructing buildings. A viable environmental strategy to lessen the amount of plastic waste involves the inclusion of plastic trash in building materials. Globally, there is a severe issue with the disposal of plastic garbage in landfills. The primary and secondary carbon bonds that are formed in plastic packaging wastes can severely contaminate the environment. Hence, managing plastic waste to generate new and useful items is essential. One of the most practical ways to safeguard the environment is to manufacture eco-bricks from PET waste and epoxy resin. Additionally, as there is no combustion involved in the production of this eco-brick; it does not harm the environment. Eco-brick can be defined as a novel concept and approach to waste management and recycling. Eco-bricks have many advantages, such as easy availability and being environmentally friendly. This study aimed to improve the composition of the eco-brick using a mixture of epoxy resin and PET particles. In this study, a mathematical modelling technique called the Response Surface Method (RSM) was designed using the Central Composite Design (CCD). Variable input factors were used to develop eco-bricks such as mixture ratio (10–90%), particle size (1–5 mm), and drying time (1–7 days), whereas the variable response included the compressive strength. The complete experimental design was developed using Design Expert 11 software, and simulation experiments with 17 sets of parameters were generated. The microstructural characteristics of the eco-brick were examined using SEM. The results of the experiments indicated that the most optimised parameters that could be used for eco-brick application were: a PET particle size of 1.1 mm, a mixing ratio of 89.9%, and a curing time of 6.9 days. Earlier research that was conducted regarding the production of eco-bricks using a PET particle and epoxy resin mixture showed that these materials had a high potential to boost compressive strength. The quadratic model was used as the basis for the regression analysis for generating the response equations. Since the difference between the experimental and anticipated values was less than 5%, it was concluded that the results of the experimental and predictive tests showed good agreement. The model used in this study yielded noteworthy outcomes. As a result, the suggested statistical model can offer a clear understanding of designing experiments and variables that affect the production of eco-brick using a blend of PET particles and epoxy resin.

Funder

Rabdan Academy Abu Dhabi

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3