Performance Evaluation of a Novel Bio-Trickling Filter for Styrene Waste Gas Treatment

Author:

Wang Liyong1,Gao Panfeng1,Li Shubiao2,Fu Haiyan1,Yang Aili1,Wu Yicheng1,Dai Yuan1,Liu Shuaihao1

Affiliation:

1. College of Environmental Science & Engineering, Xiamen University of Technology, Xiamen 361024, China

2. Xiamen Lian Chuang Dar Technology Co., Ltd., Xiamen 361000, China

Abstract

In recent years, styrene waste gas has become a hot issue in the waste gas treatment industry due to its hydrophobicity and easy polymerization. This study is aimed at the problems of long empty bed residence time and low removal capacity of waste gas from styrene degradation by bio-trickling filter (BTF). A novel bio-trickling filter (NBTF) that we designed was used to explore the effects of styrene inlet concentration, empty bed residence time (EBRT), and starvation period on the performance of NBTF in the degradation of styrene waste gas. The experimental results show that the NBTF can be started in 17 days; when the inlet concentration was lower than 1750 mg/m3 and the EBRT was 59.66 s, the removal efficiency (RE) of styrene can reach 100%. When the inlet concentration was 1000 mg/m3 and the EBRT was greater than 39.77 s, styrene waste gas can also be completely degraded. The above proves that NBTF can complete the degradation of styrene waste gas with high concentration under the condition of short EBRT; in the whole operation process, the maximum elimination capability (EC) of styrene was 112.96 g/m3/h, and NBTF shows excellent degradation performance of styrene. When the starvation period was 2 days, 7 days and 15 days, respectively, NBTF can recover high degradation performance within 2 days after restart. The NBTF has good operation performance in 124 days of operation, which proves that the NBTF can effectively degrade styrene waste gas. This provides a reference basis for industrial treatment of styrene waste gas in the future.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3