RMSRGAN: A Real Multispectral Imagery Super-Resolution Reconstruction for Enhancing Ginkgo Biloba Yield Prediction

Author:

Fan Kaixuan1ORCID,Hu Min1,Zhao Maocheng1ORCID,Qi Liang12,Xie Weijun1,Zou Hongyan1,Wu Bin1,Zhao Shuaishuai1,Wang Xiwei1

Affiliation:

1. College of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing 210037, China

2. Jinpu Research Institute, Nanjing Forestry University, Nanjing 210037, China

Abstract

Multispectral remote sensing data with abundant spectral information can be used to compute vegetation indices to improve the accuracy of Ginkgo biloba yield prediction. The limited spatial resolution of multispectral cameras restricts the detail capture over wide farmland, but super-resolution (SR) reconstruction methods can enhance image quality. However, most existing SR models have been trained on images processed from downsampled high-resolution (HR) images, making them less effective in reconstructing real low-resolution (LR) images. This study proposes a GAN-based super-resolution reconstruction method (RMSRGAN) for multispectral remote sensing images of Ginkgo biloba trees in real scenes. A U-Net-based network is employed instead of the traditional discriminator. Convolutional block attention modules (CBAMs) are incorporated into the Residual-in-Residual Dense Blocks (RRDBs) of the generator and the U-Net of the discriminator to preserve image details and texture features. An unmanned aerial vehicle (UAV) equipped with a multispectral camera was employed to capture field multispectral remote sensing images of Ginkgo biloba trees at different spatial resolutions. Four matching HR and LR datasets were created from these images to train RMSRGAN. The proposed model outperforms the traditional models by achieving superior results in both quantitative evaluation metrics (peak signal-to-noise ratio (PSNR) is 32.490, 31.085, 27.084, 26.819, and structural similarity index (SSIM) is 0.894, 0.881, 0.832, 0.818, respectively) and qualitative evaluation visualization. Furthermore, the efficiency of our proposed method was tested by generating individual vegetation indices (VIs) from images taken before and after reconstruction to predict the yield of Ginkgo biloba. The results show that the SR images exhibit better R2 and RMSE values than LR images. These findings show that RMSRGAN can improve the spatial resolution of real multispectral images, increasing the accuracy of Ginkgo biloba yield prediction and providing more effective and accurate data support for crop management.

Funder

Jiangsu Agriculture Science and Technology Innovation Fund

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3