Abstract
Photovoltaic (PV) power generation has developed rapidly in recent years. Owing to its volatility and intermittency, PV power generation has an impact on the power quality and operation of the power system. To mitigate the impact caused by the PV generation, an energy storage (ES) system is applied to the PV plants. The capacity configuration and control strategy based on the stochastic optimization method have become an important research topic. However, the accuracy of the probability distribution model is insufficient and a stochastic optimization method is rarely used in a control strategy. In this paper, a stochastic optimization method for the energy storage system (ESS) configuration considering the self-regulation of the battery state of charge (SoC) is proposed. Firstly, to reduce the sampling error when typical scenarios of PV power are generated, a time-divided probability distribution model of the ultra-short-term predicted error of PV power is established. On this basis, to solve the problem that SoC reaches the threshold frequently, a self-regulation model of the SoC based on multiple scenarios is established, which can regulate the SoC according to rolling PV power prediction. A stochastic optimization configuration model of the energy storage system is constructed, which can reduce the impact of PV uncertainty on the configuration result. Finally, the proposed stochastic optimization method is validated. The fitting error of the time-divided probability distribution model is 15.61% lower than that of the t-distribution. The expected revenue of the optimal configuration in this paper is 8.86% higher than the scheme with a fixed probability distribution model, and 16.87% higher than without considering the stochastic optimization method.
Funder
National Natural Science Foundation of China
Project Supported by Science and Technology Project of SGCC
Fundamental Research Funds for the Central Universities
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献