Abstract
Investigating the impact of land cover change in hydrological modelling is essential for water resources management. This paper investigates the importance of landcover change in the development of a physically-based hydrological model called SWAT. The study area considered is the Dodder River basin located in southern Dublin, Ireland. Runoff at the basin outlet was simulated using SWAT for 1993–2019 using five landcover maps obtained for 1990, 2000, 2006, 2012 and 2018. Results indicate that, in general, the SWAT model-simulated runoff for a chosen time-period are closer to the real-world observations when the landcover data used for simulation was collated as close to the time-period for which the simulations were performed. For 23 (20) years (from 27 years period) the monthly mean (maximum) runoff for the Dodder River generated by the SWAT model had the least error when the nearby landcover data were used. This study indicates the necessity of considering dynamic and time-varying landcover data during the development of hydrological modelling for runoff simulation. Furthermore, two composite quantile functions were generated by using a kappa distribution for monthly mean runoff and GEV distribution for monthly maximum runoff, based on model simulations obtained using different landcover data corresponding to different time-period. Modelling landcover change patterns and development of projected landcover in the future for river basins in Ireland needs to be integrated with SWAT to simulate future runoff.
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献