A Beach Profile Evolution Model Driven by the Hybrid Shock-Capturing Boussinesq Wave Solver

Author:

Wang Ping1ORCID,Fang Kezhao2,Liu Zhongbo3ORCID,Sun Jiawen1,Zhou Long4

Affiliation:

1. National Marine Environmental Monitoring Center, State Environmental Protection Key Laboratory of Marine Ecosystem Restoration, Dalian 116023, China

2. Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian 116024, China

3. College of Transportation Engineering, Dalian Maritime University, Dalian 116024, China

4. The Eighth Geological Brigade of Hebei Geological Prospecting Bureau, Marine Geological Research Survey Center of Hebei Province, Qinghuangdao 066001, China

Abstract

An existing Boussinesq wave model, solved in a hybrid format of the finite-difference method (FDM) and finite-volume method (FVM), with good merits of stability and shock-capturing, was used as the wave driver to simulate the beach evolution under nearshore wave action. By coupling the boundary layer model, the sand transport model, and the terrain updating model, the beach evolution model is established. Based on the coupled model, the interaction process between sandbars and waves was simulated, reproducing the process of the original sand bars diminishing, new sandbars creating, and finally disappearing. At the same time, the formation and movement process of sand bars under solitary and regular waves are numerically simulated, in the breaking zone, the water bottom has a larger shear stress, which promotes the sediment activation, transport and erosion formation, and near the breaking point, the decrease of sand-carrying capacity is the main reason for the formation of sandbars, the numerical model can accurately describe the changes in the shoreline profile under wave action.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Open Research Project of Hebei Marine Ecological Restoration and Smart Ocean Monitoring Engineering Research Center

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3