Mechanical Properties and Damage Layer Thickness of Green Concrete under a Low-Temperature Environment

Author:

Zhang Dongsheng,Zhang Tianhao,Yang QiuningORCID

Abstract

To study the influence of mineral admixtures on concrete’s mechanical properties after a low-temperature exposure, green concrete was prepared by mixing fly ash and slag at different replacement rates. By analysing the changes to concrete’s mechanical properties and the damage layer thickness under different ambient temperatures (20, −10, −20, −30, and −40 °C), the change rule of concrete at low temperatures was explored. The results revealed that the compressive strength of concrete, containing either fly ash or slag, peaked at 30 °C; moreover, the slag concrete’s flexural and splitting tensile strength peaked at −40 °C. The best mechanical properties were observed for a fly ash-to-slag ratio of 1:2 (F10S20; i.e., 10% fly ash and 20% slag) and its compressive strength at different temperatures was higher than that of concrete, containing 30% fly ash (F30) or 30% slag (S30), but the flexural and splitting tensile strength was lower than S30. Further, as the temperature decreased, the fly ash concrete’s damaged layer thickness gradually increased. When the content of fly ash and slag were both 15% (F15S15), the damaged layer thickness was minimal at different low temperatures, especially at −30 °C, where the thickness was only 8.31 mm.

Funder

key R & D projects of Ningxia Province of China

Publisher

MDPI AG

Subject

General Materials Science

Reference39 articles.

1. Research on temperature control technology of tunnel secondary lining concrete in winter;Tan;Chin. J. Rock. Mech. Eng.,2013

2. Influence of admixture on strength development of concrete at low temperature;Tian;Constr. Design. Proj.,2015

3. Multi-layer graphene-engineered cementitious composites with multifunctionality/intelligence

4. Investigation on physicochemical and piezoresistive properties of smart MWCNT/cementitious composite exposed to elevated temperatures

5. Mechanical properties of concrete at high temperature—A review

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3