Influence of Mixed Na2O/K2O on Chemical Durability and Spectral Properties of P2O5-Al2O3-BaO-K2O-Na2O-Nd2O3 Phosphate Glasses

Author:

Ma XibenORCID,Xu Yongchun,Cheng Jimeng,Sun Shiyu,Chen Youkuo,Wang Xin,Chen Wei,Chen Shubin,Hu Lili

Abstract

A series of 56P2O5-7.5Al2O3-5.9BaO-(28.56-x)K2O-xNa2O-1.51Nd2O3 phosphate glasses with different Na/(Na+K) ratios, which were specially designed for high-power laser application, were prepared by a high-temperature melting method. Except for the density, refractive index, glass transition temperature, and DC conductivity, the chemical durability and spectral properties, as emphasized by high-power and high-energy laser material, were further measured and analyzed. Regarding the chemical durability, the dissolution rates of these glasses do not show an evident mixed alkali effect with increasing the Na/(Na+K) ratio, although the effect is obvious for the glass transition temperature and DC conductivity. To better understand the nature of the dissolution mechanism, the ionic release concentrations of every element are determined. Both Na and K undergo ion exchange, but the ion exchange rate of K is much larger than that of Na. In terms of the spectral properties, the J–O parameters, emission cross-section, radiation lifetime, fluorescence lifetime, effective bandwidth, fluorescence branching ratio, and quantum efficiency are determined from absorption and emission spectra. The trend of Ω2 deviating from linearity indicates that the coordination environment symmetry of Nd3+ ions and the covalence of Nd-O also present an evident mixed alkali effect. The most important finding is that the emission cross-section and fluorescence lifetime of Nd3+ ions at 1053 nm were not affected by the change in the Na/K ratio. According to the above experimental results, the optimized value of the Na/K ratio was determined, based on which the 56P2O5-7.5Al2O3-5.9BaO-(28.56-x)K2O-xNa2O-1.51Nd2O3 glass maintains a high emission cross-section with good chemical durability.

Funder

Nd-glass project from National Major Science and Technology Project of China

Publisher

MDPI AG

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3