Effect of Surface Dissolution on Dislocation Activation in Stressed FeSi6.5 Steel

Author:

Zhao Dong,Ye FengORCID,Liu Binbin,Du Haoyang,Unigovski Yaakov B.ORCID,Gutman Emmanuel M.,Shneck RoniORCID

Abstract

The effects of surface dissolution on dislocation activation in FeSi6.5 steel are quantitatively studied by analyzing the stress relaxation data using the thermal activation theory of dislocation. The stressed FeSi6.5 steel sample in acid solutions (H2SO4 or HCl) exhibits a much higher rate of stress reduction with time compared with that in air or deionized water. As the stress relaxation time is prolonged to 20 min, the relaxation rates are 0.055 MPa·min−1 in water and 0.074, 0.1, 0.11 MPa·min−1 in H2SO4 solutions with pH 4, 3, and 2, respectively. In a NaCl solution, a slight increase in the relaxation rate compared with air was found. Higher acidity (lower pH) of the solution inducing higher stress relaxation rate implies the softening is associated with the anodic dissolution of the surface layer and the accelerated (additional) flow of dislocations. The analyses using the thermal activation theory of dislocation during relaxation reveal the mechanism for the accelerated plastic flow induced by the corrosive medium. The variations of these parameters are related to the relaxation of the stress field of dislocations and the weakening of interaction between slip dislocations and short-range obstacles. The chemomechanical effect, including a reduction in apparent activation energy and a decrease in waiting time for dislocation to obtain sufficient thermal activation energy to cross obstacles, causes an increase in the stress relaxation rate (plastic strain rate). The study confirms that surface dissolution accelerates the plastic flow of metals and supports the view that surface dissolution facilitates dislocation slip. It is helpful to improve the formability of brittle metals.

Funder

National Natural Science Foundation of China

Program of Introducing Talents of Discipline to Universities

Zhangjiagang Science and Technology Project

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3