Porous Co-Pt Nanoalloys for Production of Carbon Nanofibers and Composites

Author:

Afonnikova Sofya D.ORCID,Popov Anton A.ORCID,Bauman Yury I.ORCID,Plyusnin Pavel E.ORCID,Mishakov Ilya V.ORCID,Trenikhin Mikhail V.ORCID,Shubin Yury V.ORCID,Vedyagin Aleksey A.ORCID,Korenev Sergey V.ORCID

Abstract

The controllable synthesis of carbon nanofibers (CNF) and composites based on CNF (Metals/CNF) is of particular interest. In the present work, the samples of CNF were produced via ethylene decomposition over Co-Pt (0–100 at.% Pt) microdispersed alloys prepared by a reductive thermolysis of multicomponent precursors. XRD analysis showed that the crystal structure of alloys in the composition range of 5–35 at.% Pt corresponds to a fcc lattice based on cobalt (Fm-3m), while the CoPt (50 at.% Pt) and CoPt3 (75 at.% Pt) samples are intermetallics with the structure P4/mmm and Pm-3m, respectively. The microstructure of the alloys is represented by agglomerates of polycrystalline particles (50–150 nm) interconnected by the filaments. The impact of Pt content in the Co1−xPtx samples on their activity in CNF production was revealed. The interaction of alloys with ethylene is accompanied by the generation of active particles on which the growth of nanofibers occurs. Plane Co showed low productivity (~5.5 g/gcat), while Pt itself exhibited no activity at all. The addition of 15–25 at.% Pt to cobalt catalyst leads to an increase in activity by 3–5 times. The maximum yield of CNF reached 40 g/gcat for Co0.75Pt0.25 sample. The local composition of the active alloyed particles and the structural features of CNF were explored.

Funder

Ministry of Science and Higher Education of the Russian Federation

Russian Science Foundation

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3