Author:
Deng Yuxuan,Xu Jing,Li Yanna,Zhang Yanli,Kuang Chunyan
Abstract
A combined solar phase-change thermal-storage heating system is proposed, wherein erythritol is used as the phase-change material (PCM) used to fill the thermal-storage device, and the storage cavity is heated and stored with a disc concentrator. The Solidification/Melting, Volume-of-Fluid (VOF) model of ANSYS Fluent software was used to simulate the phase-change process of erythritol inside the thermal-storage device. The thermal-storage device was designed based on our numerical calculations, and its performance was tested. We found that larger PCM-volume fractions correlated with lower PCM volume-expansion rates and longer total melting times during the heat storage process. When the φ value equaled 80%, the PCM solid–liquid-phase interface and temperature distribution were most uniform and showed the best heat storage. In addition, the size of the heat-storage device affected the heat-exchange area, and the total melting time of the PCM decreased and then increased as the width-to-height ratio (I) increased. With this design capacity, the late stage of the charging process of the heat-storage device accounted for 70% of the total time, and the heat energy-utilization rate during the boiling process was 66.3%. Overall, this combined heating system can be considered a very efficient solar energy-utilization terminal for basic domestic energy needs.
Funder
Open Research Subject of Key Laboratory of Fluid and Power Machinery, Ministry of Education
Doctoral Research Foundation of Lanzhou City University
Subject
General Materials Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献