Utilization of Lead Slag as In Situ Iron Source for Arsenic Removal by Forming Iron Arsenate

Author:

Chen Pan,Zhao Yuxin,Yao Jun,Zhu JianyuORCID,Cao JianORCID

Abstract

In situ treatment of acidic arsenic-containing wastewater from the non-ferrous metal smelting industry has been a great challenge for cleaner production in smelters. Scorodite and iron arsenate have been proved to be good arsenic-fixing minerals; thus, we used lead slag as an iron source to remove arsenic from wastewater by forming iron arsenate and scorodite. As the main contaminant in wastewater, As(III) was oxidized to As(V) by H2O2, which was further mineralized to low-crystalline iron arsenate by Fe(III) and Fe(II) released by lead slag (in situ generated). The calcium ions released from the dissolved lead slag combined with sulfate to form well-crystallized gypsum, which co-precipitated with iron arsenate and provided attachment sites for iron arsenate. In addition, a silicate colloid was generated from dissolved silicate minerals wrapped around the As-bearing precipitate particles, which reduced the arsenic-leaching toxicity. A 99.95% removal efficiency of arsenic with initial concentration of 6500 mg/L was reached when the solid–liquid ratio was 1:10 and after 12 h of reaction at room temperature. Moreover, the leaching toxicity of As-bearing precipitate was 3.36 mg/L (As) and 2.93 mg/L (Pb), lower than the leaching threshold (5 mg/L). This work can promote the joint treatment of slag and wastewater in smelters, which is conducive to the long-term development of resource utilization and clean production.

Funder

the National Key Research and development program

Natural Science Foundation of Hunan Province

National Natural Science Foundation of China

Innovation Foundation of Central South University

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3