Compact Eight-Element MIMO Antenna with Reduced Mutual Coupling and Beam-Scanning Performance

Author:

Ahmad AshfaqORCID,Choi Dong-youORCID

Abstract

In this study, a multiple-input multiple-output (MIMO) antenna for wide scanning is designed. By adding slits to the patches, each element is intended to strengthen the isolation between the radiating elements. The proposed high isolation and wide scanning antenna combine to achieve the desired phased-array antenna. The array has a main beam pointing to the desired scanning region and a minimum side lobe level (SLL) in the undesired direction. A compact and linear eight-element array with an interelement spacing of λ/2 is designed and analyzed for beam scanning in the E-plane. Considering the worst case, the proposed array has a very low mutual coupling of (S21 = −24 dB), and it realizes a gain of 9.3 dBi and an SLL of 11 dB at a scanning angle of 70∘. The antenna performance was studied in terms of the S-parameter, radiation patterns, beam-scanning performance, envelope correlation coefficient (ECC), diversity gain (DG), peak gain, and efficiency. A close agreement was observed between the simulated and measured results.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference39 articles.

1. Hybrid decoupling structure based on neutralization and partition schemes for compact large-scale base station arrays;IEEE Antennas Wirel. Propag. Lett.,2021

2. Wide-band and wide-angle scanning phased array antenna for mobile communication system;IEEE Open J. Antennas Propag.,2021

3. Planar dual-band wide-scan phased array in X-band;IEEE Trans. Antennas Propag.,2014

4. 2-D wide-angle scanning phased array with hybrid patch mode technique;IEEE Antennas Wirel. Propag. Lett.,2020

5. Study and prototyping of practically large-scale mmWave antenna systems for 5G cellular devices;IEEE Commun. Mag.,2014

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3