Distress Detection in Subway Tunnel Images via Data Augmentation Based on Selective Image Cropping and Patching

Author:

Maeda KeisukeORCID,Takada Saya,Haruyama Tomoki,Togo RenORCID,Ogawa TakahiroORCID,Haseyama Miki

Abstract

Distresses, such as cracks, directly reflect the structural integrity of subway tunnels. Therefore, the detection of subway tunnel distress is an essential task in tunnel structure maintenance. This paper presents the performance improvement of deep learning-based distress detection to support the maintenance of subway tunnels through a new data augmentation method, selective image cropping and patching (SICAP). Specifically, we generate effective data for training the distress detection model by focusing on the distressed regions via SICAP. After the data augmentation, we train a distress detection model using the expanded training data. The new image generated based on SICAP does not change the pixel values of the original image. Thus, there is little loss of information, and the generated images are effective in constructing a robust model for various subway tunnel lines. We conducted experiments with some comparative methods. The experimental results show that the detection performance can be improved by our data augmentation.

Funder

JSPS KAKENHI

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference55 articles.

1. Automatic pixel-level crack detection for civil infrastructure using Unet++ and deep transfer learning;IEEE Sens. J.,2021

2. Wireless multimedia sensor network based subway tunnel crack detection method;Int. J. Distrib. Sens. Netw.,2015

3. Deterioration mapping in subway infrastructure using sensory data of GPR;Tunn. Undergr. Space Technol.,2020

4. Building durable structures in the 21st century;Concr. Int.,2001

5. Ministry of Land, Infrastructure Transport and Tourism (2022, November 13). White Paper on Land, Infrastructure, Transport and Tourism in Japan, 2017 (online), Available online: http://www.mlit.go.jp/common/001269888.pdf.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3